Skip to Main Content

Into the Gray Zone

A Neuroscientist Explores the Mysteries of the Brain and the Border Between Life and Death


See More Retailers

About The Book

In this “riveting read, meshing memoir with scientific explication” (Nature), a world-renowned neuroscientist reveals how he learned to communicate with patients in vegetative or “gray zone” states and, more importantly, he explains what those interactions tell us about the working of our own brains.

“Vivid, emotional, and thought-provoking” (Publishers Weekly), Into the Gray Zone takes readers to the edge of a dazzling, humbling frontier in our understanding of the brain: the so-called “gray zone” between full consciousness and brain death. People in this middle place have sustained traumatic brain injuries or are the victims of stroke or degenerative diseases, such as Alzheimer’s and Parkinson’s. Many are oblivious to the outside world, and their doctors believe they are incapable of thought. But a sizeable number—as many as twenty percent—are experiencing something different: intact minds adrift deep within damaged brains and bodies. An expert in the field, Adrian Owen led a team that, in 2006, discovered this lost population and made medical history. Scientists, physicians, and philosophers have only just begun to grapple with the implications.

Following Owen’s journey of exciting medical discovery, Into the Gray Zone asks some tough and terrifying questions, such as: What is life like for these patients? What can their families and friends do to help them? What are the ethical implications for religious organizations, politicians, the Right to Die movement, and even insurers? And perhaps most intriguing of all: in defining what a life worth living is, are we too concerned with the physical and not giving enough emphasis to the power of thought? What, truly, defines a satisfying life?

“Strangely uplifting…the testimonies of people who have returned from the gray zone evoke the mysteries of consciousness and identity with tremendous power” (The New Yorker). This book is about the difference between a brain and a mind, a body and a person. Into the Gray Zone is “a fascinating memoir…reads like a thriller” (Mail on Sunday).



People don’t live or die, people just float

She went with the man in the long black coat

—Bob Dylan

The scientific process works in mysterious ways.

As a young neuropsychologist at the University of Cambridge, studying the relationship between behavior and the brain, I fell in love with Maureen, a Scottish woman who was also a neuropsychologist. We met in the fall of 1988 in Newcastle upon Tyne, an English city sixty miles from the Scottish border. I had been sent up to Newcastle University to solidify a collaborative relationship between my boss, Trevor Robbins, and Maureen’s boss, the improbably named Patrick Rabbitt, who was doing innovative work on how the brain ages. Maureen and I were thrust together. I was immediately charmed by her dry wit, amazing head of chestnut hair, and lovely eyes that would tightly close whenever she laughed, which she did all the time. I was soon returning to Newcastle upon Tyne for less academic reasons, driving six hours up and back through murderous weekend traffic in my ancient Ford Fiesta, a banged-up piece of junk that I’d picked up for £1,100 from my first paycheck.

Maureen introduced me to music. Not the bland early-eighties glam rockers in eyeliner, hair spray, and jumpsuits such as Adam and the Ants, Culture Club, and Simple Minds that I’d been infatuated with through my adolescence, but the music that I still carry with me. Passionate music that told stories about land and history mixed with relationships and burning desire. The driving, soulful Celtic-based music of the Waterboys, Christy Moore, and Dick Gaughan. Maureen’s brother Phil, who lived in St. Albans, about forty-five miles from Cambridge, quickly persuaded me that a future without a guitar in hand was no future at all and took me to buy my first axe—a Yamaha that I still own and always will.

After some months of commuting between Cambridge and Newcastle upon Tyne, I moved sixty miles south to London because that’s where the patients I was studying were being treated. I continued to work as a neuropsychologist, paid by my boss in Cambridge, and signed on for a PhD at the Institute of Psychiatry at the University of London, driving between the two cities several times a week to fulfill the obligations of both posts. It was a grueling schedule, but I loved the work. Maureen gave up her job in Newcastle, took a position in London, and we soon bought our own place—a small third-floor one-bedroom apartment that was a short walk from the Maudsley Hospital and the Institute of Psychiatry in South London, where we both were based.

As a building, or set of buildings, the institute is extremely disappointing—a sprawling jumble that lacks a physical presence to match its formidable academic reputation. My office was in a prefabricated building, or portacabin, as we call them in the UK. Freezing in winter, sweltering in summer, it shook each time the main door slammed. We were promised more permanent digs every year: the portacabins would be razed. But I would return decades later and discover, to my surprise and amusement, that there they were, probably still housing aspiring PhDs.

The initial flush of excitement and romance that Maureen and I felt about moving in together was soon replaced with the more humdrum business of driving to see patients all over southern England, sitting in endless lines of stationary London traffic, searching in vain for vacant parking spots within walking distance of our home, and jump-starting my Fiesta when it decided not to start in the morning—which was all the time.

Working at the institute and the Maudsley, it was impossible not to be moved by the patients: legions of depressives, schizophrenics, epileptics, and demented souls pacing the drafty corridors. Maureen, an empathic, caring person, was deeply affected by them. She soon decided to train as a psychiatric nurse. Despite the doubtless nobility of this calling, her decision struck me as an abnegation of what could have been a glittering academic career. She began spending long evenings out with her new colleagues while I stayed home, writing and rewriting my first scientific papers, describing the shifts in behavior of patients who had had pieces of their brains removed to alleviate epilepsy or eradicate aggressive tumors.

The histories and stories of what had happened to these patients once their brains had been tampered with fascinated me. One patient I worked with had minimal frontal-lobe damage but became wildly disinhibited as a result. Before his injury he was described as a “shy and intelligent young man.” Postinjury he abused strangers in the street and carried a canister of paint with him to deface any public or private surface he could get his hands on. His speech was littered with expletives. His wild behavior escalated: he persuaded a friend to hold his ankles while he hung from the window of a speeding train, a lunatic activity by any measure. His skull and most of the front part of his cortex were crushed when he crashed headlong into a bridge. By some circular twist of fate, his minor frontal-lobe injury led directly to major damage to the same part of his brain.

Perhaps the most bizarre case I encountered concerned a young man with “automatisms”—brief unconscious behaviors during which you are unaware of your actions. Automatisms are typically caused by epileptic seizures that start in the temporal or frontal lobes and then quickly spread—an escalating cascade of neuronal firing that engulfs the entire brain. During these episodes, patients hang in a kind of gray zone. Their eyes remain open, and they are strangely animate and seemingly purposeful in their actions. These usually include routine activities: cooking, showering, or driving a familiar route. Following the episode, the patient regains consciousness and often feels disoriented but has no memory of the event.

My patient was a lanky youth with wild hair whom I tested for memory impairments following surgery that he had received to combat seizures. He was also the defendant in a murder trial. The victim was his own mother, strangled while she was securely locked in the house with her son. Just the two of them. The case turned on his being a martial arts expert with a history of epileptic automatisms, and he could (although the evidence remained entirely circumstantial) have killed her through a series of routine martial arts maneuvers and remained entirely unaware of this dreadful act.

When I assessed his memory using what were then our state-of-the-art computerized tests, I sat near the door—a strategy I had seen in numerous TV crime dramas. I didn’t feel safe. I needed a weapon. All this now seems ludicrous, but there I was, sitting in a closed office with a man who was accused of killing his own mother with his bare hands without even knowing that he’d done it! If he had done it, could he be judged responsible? I wasn’t sure. The thinking then and now was that automatisms, rather than expressing subconscious impulses, are automatic programs firing in the brain, completely outside our control. If he had been a carpenter, he would have been sawing a piece of wood rather than karate-chopping his mom.

Could his brain make him kill again? That was the uppermost question in my mind. What could I use to defend myself? The office around me was stacked high with papers, books, and the paraphernalia of scientific investigation—not exactly an armory. Beside the desk I spied a squash racquet. I clutched it, mulling over some vague plan to parry the young man’s blows. Fortunately for both of us the session passed without incident. I have often thought what an odd sight it would have been: the patient attacking me like a ninja while I tried to swat him about the head with a squash racquet.

The work was enthralling, but all the while I was losing touch with Maureen. Within a year of buying our apartment, the relationship fell apart. We were going in different directions: me into a career in science and her into a job in psychiatric care. Something had changed between us. I couldn’t understand why she’d lost the sense of shared wonder about the brain and how it is affected by damage and disease. I couldn’t understand the appeal of what felt like simply caring for a problem rather than trying to solve it. I’d made the decision, some years earlier, not to pursue a traditional medical career. I’d never wanted to be a physician, listening to people’s ailments and dishing out medication according to standard protocols. I wanted to try to understand the mysteries of the way our minds work and perhaps discover new approaches to treatment and cures. That’s what neuroscientists do. I thought that I had my eye on the bigger picture, but I was probably just insufferably self-righteous, driven by the ambition and idealism of a young scientist. I thought we might be able to understand and then cure Parkinson’s and Alzheimer’s diseases.

I was also dazzled by what then impressed me in my naïveté as the glamour that a high-flying career in neuroscience might offer. My boss was sending me to exotic locales to give talks in his stead. At an academic conference in Phoenix, Arizona, I found myself in a hot tub in the desert with two other English neuroscientists. Can you imagine? The day before we had all been plodding through the perpetual precipitation and dreariness of England, and then there we were, luxuriating among the cacti.

I must have been a bit smug when I came home from these trips. Maureen and I had a running argument about the rights and wrongs of psychiatric care, science for science’s sake, and the innate tensions between scientific discovery and medical care.

“It’s all very well studying these people,” I remember Maureen saying. “But helping them deal with their problems is a much better use of resources.”

“If we don’t do the science, these problems will persist!” I countered.

“Science might help someone down the line, years from now. But it mostly comes to nothing. And it doesn’t help patients who donate their time to your research projects, naively assuming that you are going to make their lives better.”

“I do tell them that my research is not going to help them personally.”

“Wow. Aren’t you nice?”

Our running argument had undertones of England versus Scotland. Since the beginning of time, the Scots have felt exploited by the English, whom they see as cold, bloodless mercenaries while they are passionate, earthly, and honest. In retrospect, our care-versus-pure-science positions echoed this age-old conflict.

Eventually, I met someone else and I left Maureen, moving out in 1990 just as the UK economy and housing market collapsed. Our £60,000 apartment was suddenly worth £30,000. We had an enormous negative equity. The interest rate on our mortgage doubled, which was barely manageable while Maureen lived in the apartment. Things rapidly deteriorated when she also moved in with someone else. To make the mortgage payments we were forced to rent the apartment to Brazilian friends, but Maureen wanted nothing more to do with it. I collected rent, paid the mortgage, and took care of taxes and repairs. Maureen and I were no longer on speaking terms—just sending angry letters back and forth. I ended up sleeping on the floor of a friend’s apartment in North London, a whole hour’s drive through rush-hour traffic to see my patients at the Maudsley Hospital. The previous owners had taken their cats but left the fleas. It was a miserable time.

That same year, as I went from patient to patient in South London documenting their brain injuries and their stories, strange things started to happen to my own mother’s health. She began experiencing blinding headaches and behaved in odd ways. One afternoon she disappeared for several hours and upon her return explained that she had been to see a film at the local theater. She hadn’t been to the movies in years and certainly not on her own in the middle of the day. She had just turned fifty, and our family doctor concluded that her menopause was to blame, both for her headaches and curious, unusual excursions. He couldn’t have been more wrong. One evening at home as she watched TV with my father, it became more clear that something was seriously amiss.

“What do you think of the woman’s dress?” my father asked, referring to a woman on the far left side of the screen.

“What woman?” My mother couldn’t see the woman. In fact, she couldn’t see anything in her left visual field at all.

Whatever was causing her headaches and odd behavior was now also affecting her vision. Simple tasks, such as crossing the street, became too dangerous for her to tackle alone. Imagine that you are no longer able to see anything in one part of your visual field (what you see from left to right as you look straight ahead). The problem is that our brains are remarkably good at adapting to change, and in situations such as this, they can literally reconfigure our worldview to what can be seen, completely ignoring what can’t. The missing part does not appear as empty space or as blackness, as one might imagine—it ceases to appear at all. Crossing the road with no awareness of anything on her left side was no longer something that we were going to let my mother attempt alone.

A CT scan revealed that my mother had an oligoastrocytoma growing inside her brain—a cancerous tumor that was pushing its way into the folds of her cortex, interfering with her behavior, affecting her moods, changing how she saw the world, and altering her whole sense of being. We were all devastated. Suddenly, my family’s life and my chosen career were colliding in the most diabolical way imaginable. If she’d been sent for surgery and lost part of her brain as a result, my mother could easily have ended up as a patient in one of my research studies. It was a nightmarish thought.

I was now on the other side of the fence. No longer the detached young scientist but a distraught family member—a situation I’d seen many times among the patients and families that I had been visiting in and around South London. Unfortunately, unlike the tumors in many of those patients, my mother’s was deemed inoperable, and she began round after round of chemotherapy, radiotherapy, and steroid treatment. Swelling around a brain tumor puts pressure on surrounding tissue—that’s what causes the headaches. Steroids reduce the swelling and relieve those symptoms. My mother’s hair fell out and she became bloated (a frequent side effect of steroids).

Fortunately for my family, my sister had qualified as a nurse in 1990 and had been working at the Royal Marsden Hospital, a famous London institution that is dedicated to cancer diagnosis, treatment, research, and education. She gave up work in July of 1992 to care for my mother at our family home. That same month I submitted my PhD thesis, which told the stories of patients with brain disorders, including tumors similar to the one my mother was battling. Before I could formally graduate, I had to defend my thesis, and that would take some months to arrange. By then it was clear that my mother would soon die. I desperately wanted her to see me graduate with a PhD. I called the main administrative office at the University of London and explained the circumstances. Without hesitation they agreed to let me “graduate” despite my not yet having competed the full requirements of the PhD—that would come later. We never told my mother. She was at my graduation, although she may not have been aware of what was going on. I vividly remember my father and I hauling her out of her wheelchair into one of the seats in the auditorium, me dressed in my flowing graduation gown, her in the best clothes we could find that still fit her. We lost our grip and she fell helplessly into the aisle. These are the consequences of progressive brain damage that no one tells you about. In between what you once were and what you eventually become is a grueling adaptation to the deterioration of your day-to-day abilities as tasks become increasingly difficult and finally impossible.

Soon after graduation day, my mother slipped into her own gray zone, not quite there, but not quite gone. Still living at home, now bedridden in the ground-floor dining room since she could no longer climb stairs, she slipped in and out of consciousness from the massive doses of painkillers and sedatives administered by our family doctor. Sometimes she recognized us, sometimes she didn’t. Sometimes she was lucid, sometimes she made no sense at all. My brother flew home from the States, where he was in the throes of his own postdoctoral studies at NASA’s Goddard Space Flight Center in Maryland, and we spent the last few days together as a family. She died in the early hours of the morning on November 15, 1992. We were all at her bedside when she finally stopped breathing.

Many dark days followed, but in a strange way something good came of my mother’s death. After four years of meeting those affected by brain damage and documenting their lives, I got to be on the other side and experience what it is like to watch someone you love get slowly drawn into the abyss. Whether that experience made me even more determined to pursue a career in brain research I do not know, but it certainly prepared me for the many encounters I would have with brain-injured patients and their families in the years to come. I knew firsthand what they were going through, and I felt for them. I wanted to help in any way I could.

Shortly before my mother’s death, I had been offered a postdoctoral position in Montreal, Canada, and now I jumped at the chance to move abroad. I was more than ready to walk away from the ruinous apartment and failed relationship with Maureen and my mother’s death from a brain tumor at fifty. I was through with England and took a three-year position at the Montreal Neurological Institute.

Arriving at “the Neuro” at the end of 1992 to work with Michael Petrides, then the head of the Department of Cognitive Neuroscience, was a significant slice of good fortune. Michael was passionate about brain anatomy and always keen to embrace any new approach or method that might help illuminate how the brain does mental activities such as memory, attention, and planning. Over the next three years, we spent many hours poring over his drawings of the frontal lobes, scribbling little notes about what each area of the brain probably did and designing new tests that would show us how different parts of the brain contributed to memory. I would go away and program them on my IBM 386—state-of-the-art then but woefully underpowered by today’s standards.

This was the year that what were called positron-emission tomography (PET) “activation studies” took off, driven, in part, by developments in the computing industry that allowed us to capture large data sets and digital images of the brain in action. From the launch of the Hubble Space Telescope and the Human Genome Project, computers were revolutionizing every aspect of science. And we were part of that revolution.

Volunteers for PET activation studies would lie in the scanner and be injected with small amounts of a radioactive tracer, and then we’d ask them to perform a task: remembering an unfamiliar face we flashed in front of them, for example. The principle was delightfully simple: those parts of the brain that were working hardest required more oxygen, which was delivered in the blood. Blood flow increased to areas involved in a task. We could literally map the movement of blood around the brain with our PET scanner.

It was a neuropsychologist’s dream come true. No longer would we have to wait for a special patient to come through the door with damage to one specific part of the brain in order to deduce what that brain area did. Now we could simply put healthy people in the scanner and ask them to perform our cognitive tests while we watched their brains spring to life and reach the very same conclusions.

Much of the early work was confirmatory, but that just added to the excitement. For instance, we’d known for some years that the fusiform gyrus, an area on the undersurface of the brain, is involved in face recognition; patients with damage to that area have problems recognizing people they know, a condition known as prosopagnosia, or “face blindness.” But to see the ultimate confirmation of this, when this area lit up in a group of healthy participants as they looked at a series of familiar faces presented on the computer screen, was astounding.

We naively thought we were going to be able to quickly unlock all the secrets of the brain, PET scan by PET scan; but we soon ran into the limitations of what we had at first thought was limitless technology. First among them was the so-called radiation burden. For each scan we gave participants a safe but significant dose of radioactivity. This limited the number of scans we could give any one person, which seriously restricted how many scientific questions we could ask in any one study.

The second problem with PET was that the changes in blood flow that we detected were so small that it was virtually impossible to identify them with a single scan. We had to repeat scans to build a clear picture of what was happening in the brain. We inevitably hit the radiation burden, sometimes before we’d answered a single scientific question to our satisfaction. The answer was to average the data from multiple participants. Indeed, the signals from the brain were so small that this is what we had to do most of the time.

That posed a third problem—our scientific conclusions were not about individuals but groups. Rarely could we say what a particular part of the brain was doing in any one person. Rather, our conclusions would typically take the form of “On average, across the group . . .”

A fourth limitation of PET was timing. A single scan took between sixty and ninety seconds, and what you saw at the end was the sum total of everything that happened during that period. Individual “events” slipped under the radar. Imagine a task where we asked participants to view and remember a series of faces during a ninety-second scan. It was hard to know whether the brain activity that we’d see after the analysis was complete was caused simply by the seeing of the faces, by the remembering of those faces, by some of the faces and not others . . . the list of unknowns went on and on. In spite of all of these limitations, those of us who studied the brain thought all our Christmases had come at once. From the minute I set foot in the door and began designing PET activation studies I was hooked.

One of my early successes showed that one area of the frontal lobes was crucial for organizing our memories. It wasn’t the place where memories were stored or the part of the brain that committed information to memory. Rather it dictated “how” memory should be organized. Visualize trying to remember where you parked your car this morning in a lot you use each day. How do you remember today’s parking spot and not confuse it with the place where you parked yesterday, or the day before, or last week? You could use a landmark, such as a tree or a nearby building, but you’ve probably used all those landmarks before and you are bound to get confused by them. You have to make a special kind of memory decision—you have to decide that, of all the parking spaces that you have in your memory from days gone by, this is the space that you are going to remember today. You have to label this particular space as special and especially relevant for today. This process is an example of what we call working memory, which is a special kind of memory that we only need to retain for a limited period, until the information is used, in this case until you successfully retrieve your car at the end of the day. Then the whole process starts again the next day.

Your working memory chips in whether it’s a telephone number remembered just long enough to punch it into your phone, the face of the stranger in the crowded room remembered just long enough to return the pen she lent you, or the parking space that you picked this morning for your car. No one knows what happens to these ephemeral memories. Do they just vanish into thin air? Evidence suggests that they seem to be “overwritten” by subsequent working memories. We seem to have a limited capacity for this type of brain function, which, when exceeded, leads to the inevitable removal of one memory in favor of another.

These types of studies dovetailed neatly into other areas. We started to scan patients with Parkinson’s disease to try to understand why it is that they, in particular, have problems with working memory. Unlike Alzheimer’s patients, if you show patients with Parkinson’s disease a picture that they have never before seen, they will have little trouble recognizing it later. But show them a whole series of pictures and ask them to remember one or two in particular, and the task becomes much harder. Why? It’s similar to the parking-space problem. Their problem is not with laying down memories, but with organizing them in such a way that retrieval is possible in the face of fierce competition.

During my three years in Montreal I kept the London flat afloat. Maureen and I hardly communicated. Our occasional conversations were terse, clipped, and filled with frustration on both sides. Then, in 1995, my former Cambridge boss, Trevor Robbins, called. A new brain-imaging facility—the Wolfson Brain Imaging Centre—was being set up at Cambridge’s Addenbrooke’s Hospital, and they needed someone with my expertise. As a research fellow in the Department of Psychiatry, I would run the first brain-activation studies at Cambridge, supervise students, and start to put together a lab of my own. They had a PET scanner, and Trevor convinced me that if I got my foot in the door, it could lead to a more permanent position at Cambridge. No permanent positions were on the horizon in Montreal.

So I went home to the UK in 1996. Much had changed in England since I had left; in particular, brain scanning had taken over. If you weren’t scanning brains, you were nothing, and the UK was leading the pack. What hadn’t changed was my strained relationship with Maureen. We both found it too painful to see each other and avoided meeting up at all costs. It had been four years since our breakup, and whenever I thought of our apartment and failed relationship, I felt frustrated and confused. How could we have ever been so in love and wanted to build a life together? And how had all that changed? What could possibly have been going on in her head? It made no sense. She was an absolute enigma.

Then, one July morning in 1996, a colleague called. Maureen had been found unconscious, lying beside her bike on a steep hill near the Maudsley Hospital. It was initially assumed that she’d crashed into a tree and knocked herself out cold. But it turned out to be worse—much worse. Tests revealed that she had suffered a subarachnoid hemorrhage, a ruptured brain aneurysm; a weak area in the wall of an artery had released blood into her skull. Aneurysms can be caused by a multitude of factors: family history, gender (they’re more common in women), high blood pressure, and smoking.

Yet again my personal life and my professional life collided in the most abysmal way imaginable. I had assessed many patients who were recovering from the effects of a subarachnoid hemorrhage just like Maureen’s. Many of them had problems with memory, concentration, and planning—the hemorrhage and the surgery that was necessary to treat it affected their lives forever, disrupting their thoughts, impacting their memories, and altering their personalities unpredictably. Just like my mother, Maureen could have ended up in one of my own research studies! Unfortunately, Maureen’s aneurysm wreaked even more havoc than was usual for most of my patients, and she was quickly diagnosed as being in a vegetative state—I was told that she would not likely survive. Although it was probably not the first time I had heard the expression vegetative state, it was certainly the first time it registered.

Imagine my shock. What had happened to Maureen? What did being in a vegetative state mean? Was she dead or alive? Did she know where or who she was? She was gone, but she wasn’t. How could she still be living and breathing, waking and sleeping, and yet be somehow so completely absent? This was made far more confusing by my feelings for her. How does it feel when someone you have been so close to, and then so far away from, is suddenly rendered vegetative? It feels very strange indeed.

With proper care, vegetative patients can live a long time. Several months after her brain injury Maureen was flown back to Scotland to be closer to her parents. She was kept alive, seemingly oblivious, by the people and the machines that helped feed and hydrate her. To prevent bedsores, she was regularly turned by the nursing staff. They bathed her with warm sponges, washed her hair and clipped her nails. They changed her bedding and her clothes. They talked to her, bright and chipper in the morning. (“And how are we today, Maureen?”) On weekends, they dressed her and she was moved by wheelchair to her parents’ house, where members of her loving family would often visit her.

It did not consciously occur to me that perhaps some form of consciousness could still reside in the brain activity of people such as Maureen, who were outwardly completely nonresponsive. Yet maybe that seed of an idea, outlandish as it seemed at the time, was planted. Perhaps it was a trigger. A calling to do something more useful with the experience I had acquired in using these incredible new technologies to lay bare the workings of the brain—something that Maureen would have endorsed. She had been so passionate that science should not be “science for science’s sake”: it should actually help people. Perhaps this was a chance for me to do just that.

About The Author

Photograph by Paul Mayne

Adrian Owen is currently the Canada Excellence Research Chair in Cognitive Neuroscience and imaging at The Brain and Mind Institute, Western University, Canada. He has spent the last twenty years pioneering breakthroughs in cognitive neuroscience. Among the media outlets that have featured Adrian’s research are The New York Times, The Wall Street Journal, The New Yorker, Nature, The Lancet, Science, and The New England Journal of Medicine. A resident of London, Ontario, he can be found at

Product Details

  • Publisher: Scribner (June 12, 2018)
  • Length: 336 pages
  • ISBN13: 9781501135217

Browse Related Books

Raves and Reviews

"Riveting and strangely uplifting . . . the testimonies of people who have returned from the gray zone evoke the mysteries of consciousness and identity with tremendous power."
The New Yorker

“Astonishing . . . ground-breaking research . . . Science as an act of adventure, and also rescue. Owen is intrepid, and vulnerable. It never feels less than miraculous when he pulls a fellow human out of the dark.”
The Times (UK) Book of the Week

“[A] fascinating memoir . . . The Gray Zone reads like a thriller as [Owen] recounts his and his teams’ efforts to explore [the] ‘gray zone’ . . . Owen’s enthusiasm for his science crackles from the pages. His determination to fight for the scores of voiceless gray-zone patients he encounters, to prove they’re ‘thinking, feeling people’ is hugely thought-provoking and deeply moving.”
Mail on Sunday (UK)

“Ground-breaking . . . a fascinating and accessible account of cutting-edge science, and of those whose lives have been altered in an instant . . . ?Owen’s enthusiasm for his subject is infectious . . . This book will be required reading for anyone sitting by a loved one’s bedside, caregivers, doctors, ethicists, lawyers and philosophers.”
Sunday Times (UK)

“A fascinating and highly readable book, written with evangelical fervor . . . gripping and moving.”
—New Statesman

Into the Gray Zone weaves a fascinating tale using medical data, heart-wrenching case studies and [Owen’s] own personal experiences.”
—Good Housekeeping

“[A] remarkable book . . . Through examinations of human brains damaged by trauma, tumors, infections and vascular accidents, [Owen] attempts to explore the nature of consciousness . . . [his] experiments have allowed vegetative-state patients with residual consciousness to connect with the external world.”
—Literary Review (UK)

"Meshing memoir with scientific explication, Owen reveals how functional magnetic resonance imaging can probe the deep space of trapped minds. It's a riveting read, from the march of technology and tests for neural responses—such as imagining playing a game of tennis—to extraordinary personal accounts of the 'gray zone' by partially recovered patients."
Nature magazine

“Although he has written hundreds of research papers about his work, Into the Gray Zone is Owen’s first book pulling it altogether in fast-paced prose. Readers should prepare to be educated, yes. But more satisfyingly, they should prepare to be fascinated, astonished and, at times, moved to tears.”
—Winnipeg Free Press

“The model of how pop science involving sensational subjects should be done.”
—The Globe and Mail

“Fascinating . . . With remarkable clarity, Owen punctuates his findings with concise dispatches on the human condition and the disparities between what is considered quality of life and what some consider an inhumane, dysfunctional existence . . . A striking scientific journey that draws hopeful attention to how the brain reacts, restores, and perseveres despite grave injury.”
—Kirkus Reviews

"Vivid, emotional, and thought-provoking . . . Owen's story of horror and hope will long haunt readers."
—Publishers Weekly

“A fantastically thought provoking book that will cause you to question the most essential ideas you have about what it means to be alive, and what it means to be you. Adrian Owen is not just one of our top scientists, but a great storyteller.”
—Daniel J. Levitin, New York Times bestselling author of This Is Your Brain on Music and The Organized Mind

Into the Gray Zone is required reading for anyone who wants to explore the outer limits of consciousness, and the human spirit. Neuroscientist Adrian Owen takes us on gripping, often harrowing journeys into the most mysterious realm of human experience: the twilight zone between life and death. He narrates this real-life scientific thriller with authority, compassion and unexpected humor. Into the Gray Zone is a riveting read that will open your eyes, your heart, and your mind.”
—Joshua Horwitz, War of the Whales: A True Story, Winner, 2015 PEN Literary Award for Best Science Writing

"What an amazing read! Adrian Owen takes us on a personal and scientific journey, which leads to the discovery of lost minds hidden within the damaged brains of patients in a vegetative state. The book is a real page-turner, both because it unpacks the complexities of modern neuroscience in an accessible way and because it directly confronts profound ethical questions."
Melvyn Goodale, PhD, coauthor of Sight Unseen: An Exploration of Conscious and Unconscious Vision

"Into the Gray Zone is both a crystal-clear description of cutting-edge neuroscience from one of the pioneers in the field, and a set of intensely personal stories about patients in the twilight of consciousness. Owen deftly knits these two strands together to raise fascinating ethical questions about human identity and value. The result is one of the most moving and gripping science books you're ever likely to read."
—Daniel Bor, author of The Ravenous Brain: How the New Science of Consciousness Explains Our Insatiable Search for Meaning

"This is an unforgettable book. Owen weaves together stories of human resilience in the face of extraordinary adversity with an account of his own ground-breaking research, and in so doing takes us on a deeply moving journey to the very frontiers of consciousness. I couldn't put it down."
—Tim Bayne, author of The Unity of Consciousness

“Immensely moving, profound, and engaging, with a zest for life and science that bubbles off the page…Owen has lived the dream of a neuroscientific discovery that changes thinking about a terrifying medical condition and how patients and their families can be given the answers they crave. Reading how this happened will make you alternately laugh, gasp and cry.”
—John Duncan, author of How Intelligence Happens

"As a journalist observing Adrian Owen's pioneering research over the years, I've grown used to the media sensation created by his descents into the twilight world between death and consciousness. But to understand the profound impact of his work on his many patients, told in his own words, is truly moving and inspirational. Though their experiences are disturbing, Into the Gray Zone provides an uplifting testament to the power of scientific curiosity and the extraordinary resilience of the human spirit. This book delivers an eloquent message: even in the most desperate circumstances, there can be hope."
—Roger Highfield, former editor of New Scientist and coauthor of SuperCooperators and The Arrow of Time

"Taking my evening bath while dipping into the opening pages of Into the Gray Zone, I finished three hours later, with the water cold. The book is simply unputdownable. What kept me in the bathtub is Owen's account of communicating with the most impaired neurological patients—those unfortunate individuals whose damaged body and brains often put them at a greater distance from us than an astronaut lost in space."
—Christof Koch, PhD, President and Chief Scientific Officer, Allen Institute for Brain Science

"Into the Gray Zone takes us on an unforgettable journey, and provides fascinating insight into cutting-edge neuroscience and the power of the human psyche. Owen's impressive scientific credentials and remarkable personal experiences make him the perfect host as we attempt to discover the truth about patients thought to be in a vegetative state. Time and again we are taken to the edge of our seats, reflecting on what it means to be alive and how hope can triumph in the most tragic of circumstances."
—Richard Wiseman, bestselling author of The Luck Factor and 59 Seconds: Think a Little, Change a Lot

"An amazing book that challengs basic assumptions about what it means to be a person! What's on display here is a curious branch of brain research that is both fascinating and, frankly, terrifying. Owen's work, which lies at the intersection of neuroscience, philosophy, and ethics, gives a voice to patients long written off by all but the most devoted family members—who somehow knew all along that their loved ones were still in there. It should be required reading for anyone interested in the brain, and especially, for all those who care for patients thought to be in a vegetative state."
—Katrina Firlik, author of Another Day in the Frontal Lobe: A Brain Surgeon Exposes Life on the Inside

"Captivating . . . In this book, which will bring new hope to many, we see Owen explore new realms of consciousness—ones experienced by patients who are devastated by brain injury yet surprisingly endowed with thought, feeling, and memory."
—Kevin Nelson, author of The Spiritual Doorway in the Brain: A Neurologist's Search for the God Experience

Resources and Downloads

High Resolution Images